Sélection des matériaux

Quels outils pour faire le meilleur choix ?

Science Des Matériaux

semestre 1

module M1104

Propriétés des matériaux

Cours: 9h - TD: 9h - TP: 12h

semestre 2

module M2104

Mise en œuvre et comportement des matériaux

Cours: 15h - TD: 15h - TP: 16h

semestre 3

module M3104

Sélection des matériaux

Cours: 2h - TD: 8h - TP: 4h

semestre 4

Enseignants

Jean Colombani

04 72 44 85 70 jean.colombani@univ-lyon1.fr

Oriane Bonhomme

04 72 44 85 58 oriane.bonhomme@univ-lyon1.fr

Damien Le Roy

04 72 43 15 19 damien.le-roy@univ-lyon1.fr

Pauline Schlosser

04 72 65 53 41 pauline.schlosser@univ-lyon1.fr

Supports de cours : Jean Colombani, Laurent Joly et Vittoria Pischedda

http://sdm.univ-lyon1.fr/

Cadre de vélo : aciers

- le plus courant
- rigide, facile à travailler, peu coûteux
- lourd, sujet à la corrosion

vélo tandem

Pashley-Moulton TSR

- cadres premier prix:(aciers au carbone)
- cadres de qualité:(aciers Cr-Mo ou Mn-Mo)

Alliages d'aluminium

- plus légers que les aciers
- moins résistants / endurants (→ tubes plus épais)
- facile à souder ; meilleure tenue à la corrosion

vélo pour enfant

vélo électrique

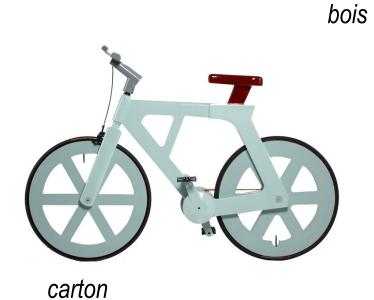
Alliages de titane

vélo couché

- très cher
- résistance spécifique et tenue à la corrosion très bonnes
- rigidité spécifique faible

Composites (fibres de carbone)

- légèreté, résistance, tenue en corrosion, flexibilité de mise en forme
- anisotropie réponse différente suivant l'orientation de l'effort
- tenue aux chocs médiocre, prix très élevé



vélo de course triathlon

Bois / bambou

• résistance / rigidité spécifiques excellentes

draisienne

Choix de matériau : évolution

Construction : pierre, bois
béton, acier

■ Transport : métaux → composites

Accessoires : céramiques plastiques

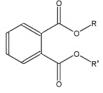
innovation (matériaux

 Electronique/informatique : semi-conducteurs, nanomatériaux, cristaux liquides, disques optiques, fibres optiques

Santé et pollution

plomb : retiré de l'essence automobile mais encore utilisé dans l'industrie

amiante : interdite en France depuis 1997



mercure : traité international en négociation depuis juin 2010 par le PNUE

bisphénol: interdit en 2012 en France pour la fabrication des biberons

phtalates: interdites en 2006 en France dans les jouets destinés aux enfants de moins de 3 ans

connaitre les matériaux et leurs propriétés

Propriétés des matériaux

propriétés mécaniques

rigidité, résistance, dureté, ductilité, fragilité, ténacité, amortissement, frottement, ...

propriétés chimiques

tenue à la corrosion, aux solvants, ...

propriétés physiques

- électriques (conductivité, constante diélectrique, ...)
- magnétiques (susceptibilité magnétique, ...)
- optiques (transparence, réflectivité, couleur, indice, ...)
- thermiques (conductivité, capacité calorifique, ...)

Propriétés mécaniques

- Domaine élastique
 - modules d'élasticité (Young *E*, Coulomb *G*, compression *K*)
 - coefficient de Poisson $\, \nu \! = \! \, \varepsilon_{\!\scriptscriptstyle t} \, / \, \varepsilon \,$

[GPa]

[sans dim.]

- Domaine plastique
 - limite élastique Re (traction/compression)
 - résistance en traction Rm
 - déformation après rupture \mathcal{E}_{R}
 - dureté H

[MPa]

[MPa]

[sans dim.]

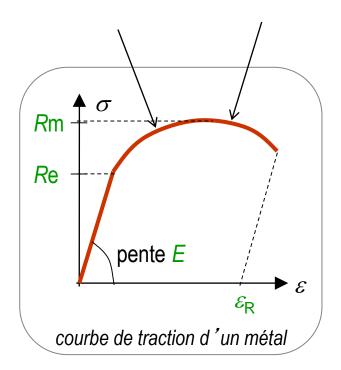
[sans dim.]

Quizz:

rigide ductile élastique/souple résistant dur fragile mou

E faible

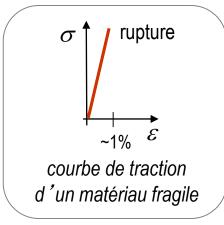
 \mathcal{E}_{R} élevé

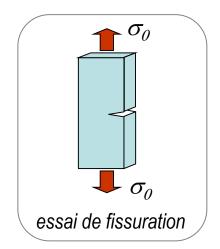

E élevé

H élevé

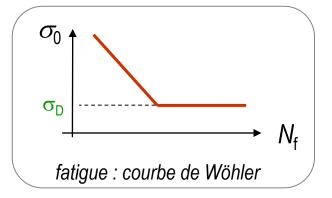
 \mathcal{E}_{R} faible/nul

Re / Rm élevé

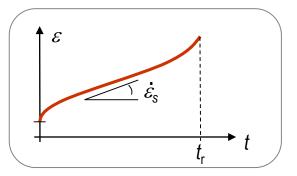

H faible



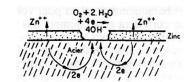
Propriétés mécaniques


- Rupture fragile
 - ténacité K_{/c}

[MPa $m^{1/2}$]



- Fatigue
 - limite d'endurance σ_D [MPa]


- Fluage
 - vitesse de fluage $\dot{\mathcal{E}}_{s}$ [% s⁻¹]
 - durée de vie t_r [s]

Propriétés chimiques

- Oxydation (sèche et aqueuse)
- Protection contre l'oxydation (alliages inoxydables, protection sacrificielle)

Oxyde poreux ou fissuré	Oxyde dense	Oxyde volatil
O,	O ₂	o, o, wo,
in		
Oxydation rapide ralentissant avec le temps	Oxydation très lente	Oxydation rapide à vitesse constante

Résistance aux acides, aux bases, aux solvants, à la lumière, ...

Propriétés physiques

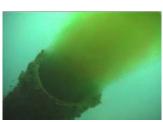
- Propriétés électriques
 - conductivité électrique σ
 - permittivité diélectrique ε ...
- Propriétés optiques
 - réflectivité R / transmittivité T
 - densité optique
 - couleur ...

- Propriétés magnétiques
- perméabilité magnétique μ ...
- Propriétés thermiques
 - conductivité thermique λ
 - capacité calorifique (=chaleur spécifique) C_P
 - température de fusion T_f
 - coefficient de dilatation thermique α ...

Autres propriétés

Masse volumique

propriété intrinsèque


Prix

Disponibilité

Impact environnemental

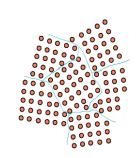
Impact sanitaire

propriétés extrinsèques

Exercices

- Quelle relation physique utiliser pour :
 - limiter une déformation élastique ?
 - éviter toute déformation plastique ?
 - éviter la rupture d'un matériau ductile ?
 - éviter toute rupture par fatigue pour un acier ?
 - éviter la rupture fragile ?
 - choisir le matériau le plus ductile ?
 - limiter une déformation élastique transversale ?
 - éviter la rupture par fatigue pour un alliage d'aluminium ?

Classes de matériaux



Métaux

- > solides atomiques à liaison métallique
- > cristallins

denses, conducteurs, opaques, résistants, ductiles, ...

Métaux ferreux

Fe + C (+ ...)

Aciers

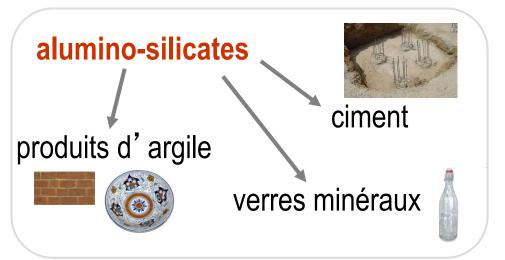
- •au carbone / non-alliés
- •alliés (rapides, inoxydables, ...)

Fontes

- blanches (F+Cémentite)
- •grises (F+Graphite)
 - fonte ductile, ...

Métaux non-ferreux

- alliages légers (Al, Mg, Ti, …)
- alliages de Cu, Zn, Ni, Zr, ...
- terres rares
- métaux réfractaires
- métaux précieux
- métaux nobles
- métaux lourds



Céramiques

liaisons ioniques, covalentes, parfois faibles

propriétés chimiques

propriétés physiques

céramiques techniques

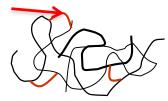
carbone

propriétés mécaniques

autre propriété

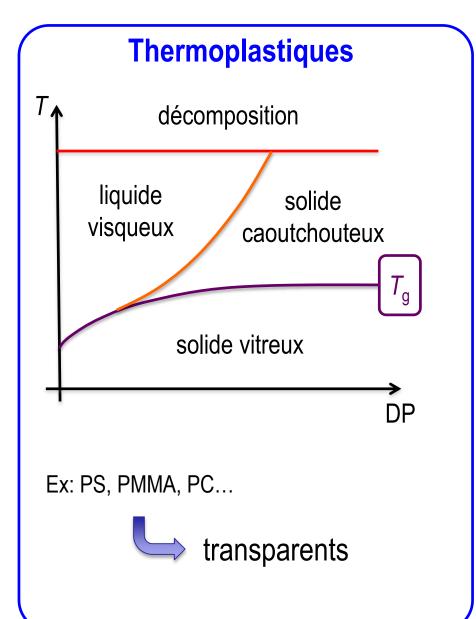
Polymères

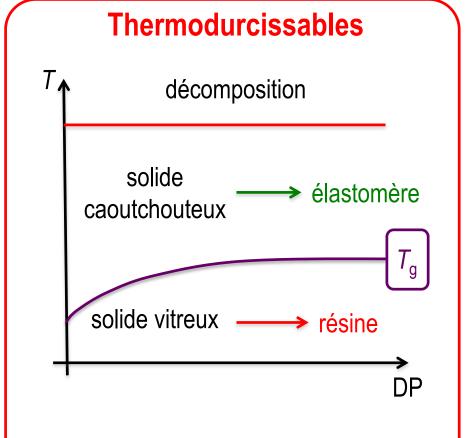
Thermoplastiques


PE, PP, PS, PVC, PTFE, PMMA, PET, PC, PA, polyaramides, PEEK, cellulose...

Thermodurcissables

ponts chimiques


polyesters, phénolastes (PF), aminoplastes, polyépoxydes (EP), lignine...

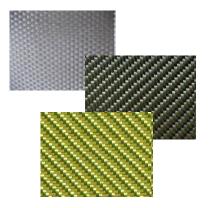

Elastomères

polyisoprènes (caoutchouc, gutta percha...), polyuréthanes (PUR), polysiloxanes/silicones (SI) ...

Polymères amorphes

Ex : polyesters, phénolastes (PF), aminoplastes, polyépoxydes (EP), lignine, polyisoprènes (caoutchouc, gutta percha...), polyuréthanes (PUR), polysiloxanes/silicones (SI)

Composites


Composite = matrice + renfort

Composite techniques :

surtout matrice polymère surtout thermodurcissables surtout polyépoxydes

- Renforts les plus fréquents :
 - fibres de verre (bon compromis performance mécanique / prix)
 - fibres de carbone (excellente rigidité et résistance)
 - fibres d'aramide (bonne tenue aux chocs)

Composites à matrice céramique : construction (béton, béton armé)

Démarche

Fonction (de l'objet) A quoi sert-il? Que lui impose-t-on?

Ex. : supporter une charge en compression sans rompre, être étiré sans dépasser une certaine déformation élastique, supporter une différence de température sans trop transmettre de chaleur...

Objectif (commercial, environnemental...) Que faut-il optimiser ?

Ex.: minimiser le prix, maximiser le transfert thermique, minimiser la masse, ...

Paramètres fixes : quels paramètres sont imposés (géométrie, fonction) ?

ajustable : quel paramètre (unique) peut-on faire varier ?

matériau : quelles propriétés du matériau sont mises en jeu ?

Lois physiques régissant le problème :

Ex.: élasticité

loi de Hooke (σ = $E \varepsilon$)

propagation de fissure

K ≤ *K*c

résistance

 σ < Rm ou plus souvent σ < Rm / s

coefficient de

sécurité

Fonctions

Nom donné à certains composants du fait de leur fonction quelle que soit leur géométrie

	Nom	fonction
(a) Teaction Bearings	barre	> supporte charge en traction
(b) Flexion pourte	poutre	> supporte moment de flexion
(ii) Tursian : arbine	arbre	> supporte couple de torsion
(d) Compression : colonie	colonne	> supporte charge en compression

Exemple de démarche

Conception d'une colonne cylindrique :

1) Fonction: soutenir un toit

supporter une charge en compression *F* avec un allongement élastique limité

2) Objectif: minimiser la masse M

3) Paramètres :

fixés par le cahier des charges :

- ajustable :

- matériau :

•domaine élastique

masse minimale →

4) Equations:

•exprimer l'objectif en fonction des autres paramètres :

•équation physique liée à la fonction :

Fonction objectif

5) Fonction objectif : objectif exprimé sans paramètre ajustable

Ex.: masse M

Ex.: section de la colonne S

1) isoler le paramètre ajustable dans l'équation physique liée à la *fonction*

$$\frac{F}{S} = E \frac{Dh}{h}$$
 \Longrightarrow $S = \frac{Fh}{EDh}$

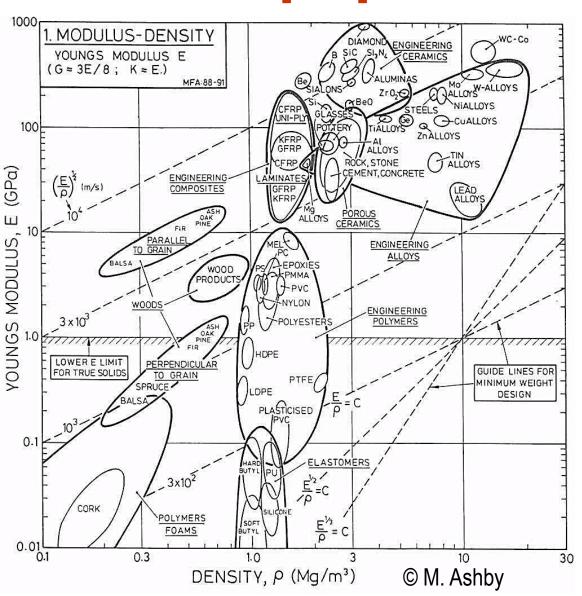
2) l'intégrer dans l'expression de l'objectif

$$M = \rho h S$$

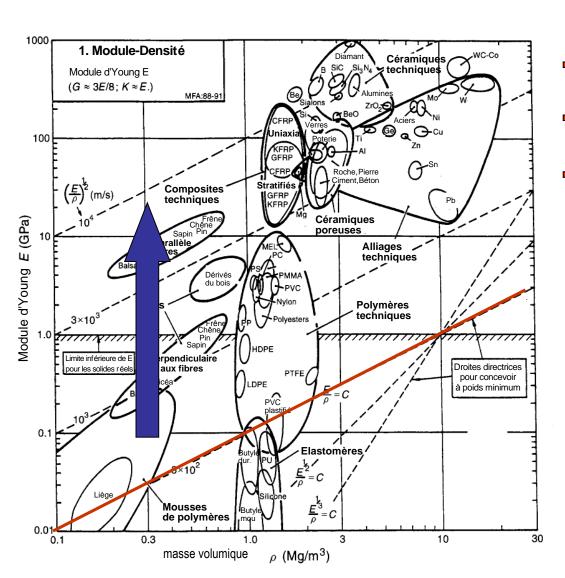
3) séparer les paramètres fixes et les paramètres matériau

Fonction objectif

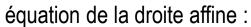
Indice de performance


rappel fonction objectif:
$$M = \left(\frac{\rho}{E}\right) \left(\frac{Fh^2}{\Delta h}\right)$$

- \bullet minimiser la masse \rightarrow minimiser $\frac{\rho}{E}$ \rightarrow maximiser $\frac{E}{\rho}$ indice de performance, noté I, à maximiser
- 6) Indice de performance = $\frac{1}{\frac{1}{\text{partie matériau}}}$ (objectif à maximiser)
- maximiser l'indice de performance = obtenir le meilleur compromis entre deux propriétés pour un problème donné (ex. : E et ρ)



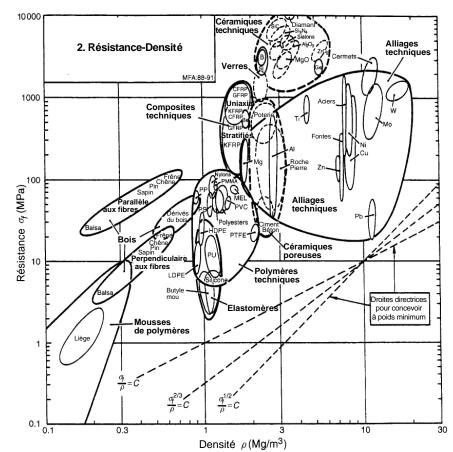
On peut avoir $\frac{E}{\rho}$ grand mais E très petit ou ρ très grand !!


Diagrammes d'Ashby Cartes de propriétés

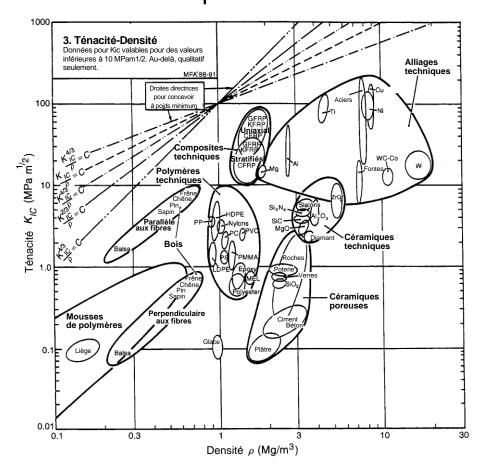
Diagrammes d'Ashby

- d'abscisse
$$X = \log(\rho)$$

- d'ordonnée
$$Y = \log(E)$$


- de pente
$$a = 1$$

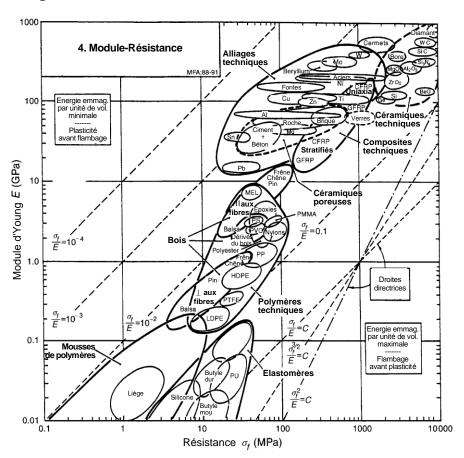
d'ordonnée à l'origine b = log(l)

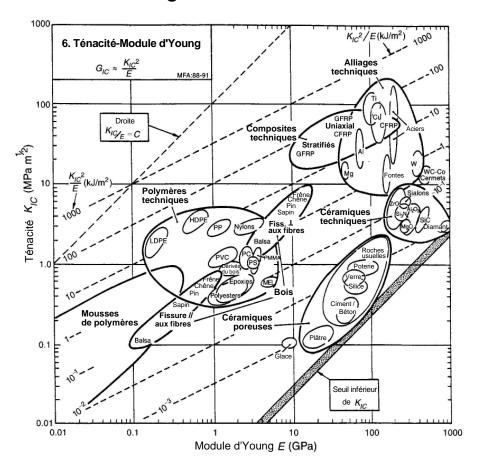


Autres diagrammes

Compromismasse volumique / résistance

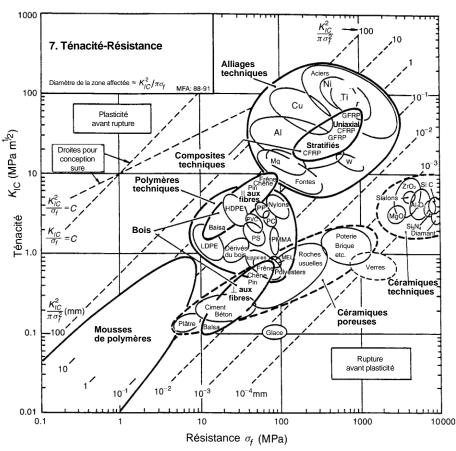
Compromis masse volumique / ténacité



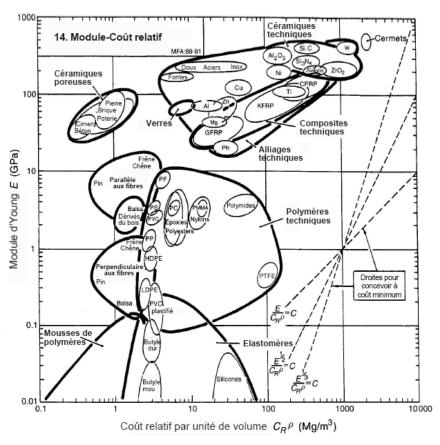

pointillés : résistance en compression

Autres diagrammes

Compromis rigidité / résistance

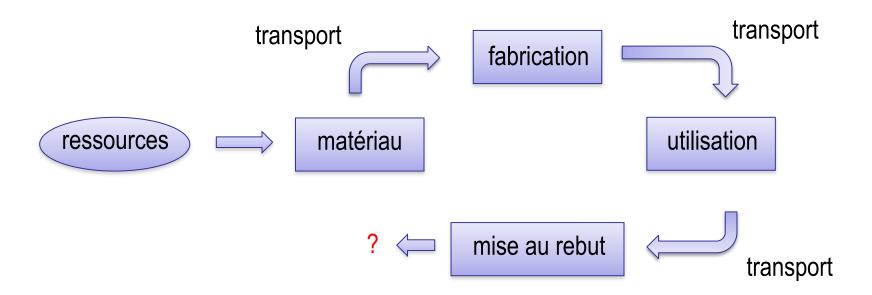


Compromis ténacité / rigidité



Autres diagrammes

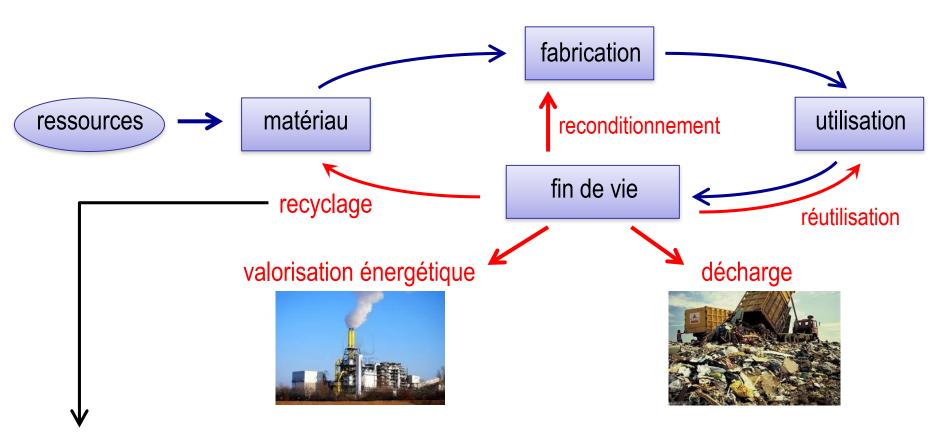
Compromis ténacité / résistance


Compromis rigidité / coût

+ rigidité spécifique, résistance spécifique, conductivité thermique, diffusivité thermique, coefficient de dilatation, coût en énergie, résistivité électrique...

Éco-audit du cycle de vie

> identifier la phase la plus gourmande en énergie

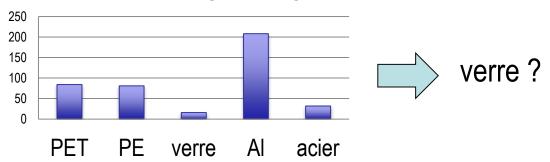


> choix de matériau : optimiser la performance énergétique de cette phase

Exercice : avion, automobile, réfrigérateur, parking multi-étages, maison...

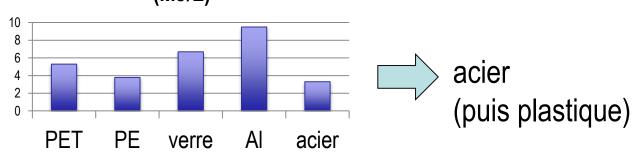
Fin de vie : quelles options?

Comment absorber les déchets générés ?


Collecte, tri, nettoyage → possible / rentable ?

- ➤ métaux : tri facile, coût recyclage < élaboration → très recyclés
- ➤ polymères : tri difficile, coût recyclage ~ élaboration → peu recyclés.

La meilleure bouteille?


Phase problématique : élaboration du matériau

contenu en énergie (MJ/kg)

➤ énergie par unité de fonction remplie

énergie par unité de volume (MJ/L)

Méthodologie

1) Fonction de l'objet

- issue du cahier des charges fonctionnel
- 2) Objectif de conception
- choix commercial, environnemental...

3) Paramètres

- paramètres fixes + ajustable + matériau
- 4) Equations physiques
- une issue de la fonction + une issue de l'objectif

5) Fonction objectif

- objectif exprimé sans paramètre ajustable
- 6) Indice de performance
- (inverse des) paramètres matériaux dans la fonction objectif

- 7) Diagramme d'Ashby
- transformer l'indice de performance en équation
- d'une droite affine + trouver la droite correspondant
- à l'indice de performance maximum